Metamath Proof Explorer


Theorem srgidcl

Description: The unit element of a semiring belongs to the base set of the semiring. (Contributed by NM, 27-Aug-2011) (Revised by Mario Carneiro, 27-Dec-2014) (Revised by Thierry Arnoux, 1-Apr-2018)

Ref Expression
Hypotheses srgidcl.b B = Base R
srgidcl.u 1 ˙ = 1 R
Assertion srgidcl R SRing 1 ˙ B

Proof

Step Hyp Ref Expression
1 srgidcl.b B = Base R
2 srgidcl.u 1 ˙ = 1 R
3 eqid mulGrp R = mulGrp R
4 3 srgmgp R SRing mulGrp R Mnd
5 3 1 mgpbas B = Base mulGrp R
6 3 2 ringidval 1 ˙ = 0 mulGrp R
7 5 6 mndidcl mulGrp R Mnd 1 ˙ B
8 4 7 syl R SRing 1 ˙ B