Metamath Proof Explorer


Theorem srgidmlem

Description: Lemma for srglidm and srgridm . (Contributed by NM, 15-Sep-2011) (Revised by Mario Carneiro, 27-Dec-2014) (Revised by Thierry Arnoux, 1-Apr-2018)

Ref Expression
Hypotheses srgidm.b B = Base R
srgidm.t · ˙ = R
srgidm.u 1 ˙ = 1 R
Assertion srgidmlem R SRing X B 1 ˙ · ˙ X = X X · ˙ 1 ˙ = X

Proof

Step Hyp Ref Expression
1 srgidm.b B = Base R
2 srgidm.t · ˙ = R
3 srgidm.u 1 ˙ = 1 R
4 eqid mulGrp R = mulGrp R
5 4 srgmgp R SRing mulGrp R Mnd
6 4 1 mgpbas B = Base mulGrp R
7 4 2 mgpplusg · ˙ = + mulGrp R
8 4 3 ringidval 1 ˙ = 0 mulGrp R
9 6 7 8 mndlrid mulGrp R Mnd X B 1 ˙ · ˙ X = X X · ˙ 1 ˙ = X
10 5 9 sylan R SRing X B 1 ˙ · ˙ X = X X · ˙ 1 ˙ = X