Metamath Proof Explorer


Theorem srgisid

Description: In a semiring, the only left-absorbing element is the additive identity. Remark in Golan p. 1. (Contributed by Thierry Arnoux, 1-May-2018)

Ref Expression
Hypotheses srgz.b B=BaseR
srgz.t ·˙=R
srgz.z 0˙=0R
srgisid.1 φRSRing
srgisid.2 φZB
srgisid.3 φxBZ·˙x=Z
Assertion srgisid φZ=0˙

Proof

Step Hyp Ref Expression
1 srgz.b B=BaseR
2 srgz.t ·˙=R
3 srgz.z 0˙=0R
4 srgisid.1 φRSRing
5 srgisid.2 φZB
6 srgisid.3 φxBZ·˙x=Z
7 6 ralrimiva φxBZ·˙x=Z
8 1 3 srg0cl RSRing0˙B
9 oveq2 x=0˙Z·˙x=Z·˙0˙
10 9 eqeq1d x=0˙Z·˙x=ZZ·˙0˙=Z
11 10 rspcv 0˙BxBZ·˙x=ZZ·˙0˙=Z
12 4 8 11 3syl φxBZ·˙x=ZZ·˙0˙=Z
13 7 12 mpd φZ·˙0˙=Z
14 1 2 3 srgrz RSRingZBZ·˙0˙=0˙
15 4 5 14 syl2anc φZ·˙0˙=0˙
16 13 15 eqtr3d φZ=0˙