Step |
Hyp |
Ref |
Expression |
1 |
|
srgmulgass.b |
|
2 |
|
srgmulgass.m |
|
3 |
|
srgmulgass.t |
|
4 |
|
oveq1 |
|
5 |
4
|
oveq1d |
|
6 |
|
oveq1 |
|
7 |
5 6
|
eqeq12d |
|
8 |
7
|
imbi2d |
|
9 |
|
oveq1 |
|
10 |
9
|
oveq1d |
|
11 |
|
oveq1 |
|
12 |
10 11
|
eqeq12d |
|
13 |
12
|
imbi2d |
|
14 |
|
oveq1 |
|
15 |
14
|
oveq1d |
|
16 |
|
oveq1 |
|
17 |
15 16
|
eqeq12d |
|
18 |
17
|
imbi2d |
|
19 |
|
oveq1 |
|
20 |
19
|
oveq1d |
|
21 |
|
oveq1 |
|
22 |
20 21
|
eqeq12d |
|
23 |
22
|
imbi2d |
|
24 |
|
simpr |
|
25 |
|
simpr |
|
26 |
25
|
adantr |
|
27 |
|
eqid |
|
28 |
1 3 27
|
srglz |
|
29 |
24 26 28
|
syl2anc |
|
30 |
|
simpl |
|
31 |
30
|
adantr |
|
32 |
1 27 2
|
mulg0 |
|
33 |
31 32
|
syl |
|
34 |
33
|
oveq1d |
|
35 |
1 3
|
srgcl |
|
36 |
24 31 26 35
|
syl3anc |
|
37 |
1 27 2
|
mulg0 |
|
38 |
36 37
|
syl |
|
39 |
29 34 38
|
3eqtr4d |
|
40 |
|
srgmnd |
|
41 |
40
|
adantl |
|
42 |
41
|
adantl |
|
43 |
|
simpl |
|
44 |
31
|
adantl |
|
45 |
|
eqid |
|
46 |
1 2 45
|
mulgnn0p1 |
|
47 |
42 43 44 46
|
syl3anc |
|
48 |
47
|
oveq1d |
|
49 |
24
|
adantl |
|
50 |
1 2
|
mulgnn0cl |
|
51 |
42 43 44 50
|
syl3anc |
|
52 |
26
|
adantl |
|
53 |
1 45 3
|
srgdir |
|
54 |
49 51 44 52 53
|
syl13anc |
|
55 |
48 54
|
eqtrd |
|
56 |
55
|
adantr |
|
57 |
|
oveq1 |
|
58 |
35
|
3expb |
|
59 |
58
|
ancoms |
|
60 |
59
|
adantl |
|
61 |
1 2 45
|
mulgnn0p1 |
|
62 |
42 43 60 61
|
syl3anc |
|
63 |
62
|
eqcomd |
|
64 |
57 63
|
sylan9eqr |
|
65 |
56 64
|
eqtrd |
|
66 |
65
|
exp31 |
|
67 |
66
|
a2d |
|
68 |
8 13 18 23 39 67
|
nn0ind |
|
69 |
68
|
expd |
|
70 |
69
|
3impib |
|
71 |
70
|
impcom |
|