Metamath Proof Explorer


Theorem srgo2times

Description: A semiring element plus itself is two times the element. "Two" in an arbitrary (unital) semiring is the sum of the unity element with itself. (Contributed by AV, 24-Aug-2021) Variant of o2timesd for semirings. (Revised by AV, 1-Feb-2025)

Ref Expression
Hypotheses srgo2times.b B = Base R
srgo2times.p + ˙ = + R
srgo2times.t · ˙ = R
srgo2times.u 1 ˙ = 1 R
Assertion srgo2times R SRing A B A + ˙ A = 1 ˙ + ˙ 1 ˙ · ˙ A

Proof

Step Hyp Ref Expression
1 srgo2times.b B = Base R
2 srgo2times.p + ˙ = + R
3 srgo2times.t · ˙ = R
4 srgo2times.u 1 ˙ = 1 R
5 1 2 3 srgdir R SRing x B y B z B x + ˙ y · ˙ z = x · ˙ z + ˙ y · ˙ z
6 5 ralrimivvva R SRing x B y B z B x + ˙ y · ˙ z = x · ˙ z + ˙ y · ˙ z
7 6 adantr R SRing A B x B y B z B x + ˙ y · ˙ z = x · ˙ z + ˙ y · ˙ z
8 1 4 srgidcl R SRing 1 ˙ B
9 8 adantr R SRing A B 1 ˙ B
10 1 3 4 srglidm R SRing x B 1 ˙ · ˙ x = x
11 10 ralrimiva R SRing x B 1 ˙ · ˙ x = x
12 11 adantr R SRing A B x B 1 ˙ · ˙ x = x
13 simpr R SRing A B A B
14 7 9 12 13 o2timesd R SRing A B A + ˙ A = 1 ˙ + ˙ 1 ˙ · ˙ A