Step |
Hyp |
Ref |
Expression |
1 |
|
srgpcomp.s |
|
2 |
|
srgpcomp.m |
|
3 |
|
srgpcomp.g |
|
4 |
|
srgpcomp.e |
|
5 |
|
srgpcomp.r |
|
6 |
|
srgpcomp.a |
|
7 |
|
srgpcomp.b |
|
8 |
|
srgpcomp.k |
|
9 |
|
srgpcomp.c |
|
10 |
|
oveq1 |
|
11 |
10
|
oveq1d |
|
12 |
10
|
oveq2d |
|
13 |
11 12
|
eqeq12d |
|
14 |
13
|
imbi2d |
|
15 |
|
oveq1 |
|
16 |
15
|
oveq1d |
|
17 |
15
|
oveq2d |
|
18 |
16 17
|
eqeq12d |
|
19 |
18
|
imbi2d |
|
20 |
|
oveq1 |
|
21 |
20
|
oveq1d |
|
22 |
20
|
oveq2d |
|
23 |
21 22
|
eqeq12d |
|
24 |
23
|
imbi2d |
|
25 |
|
oveq1 |
|
26 |
25
|
oveq1d |
|
27 |
25
|
oveq2d |
|
28 |
26 27
|
eqeq12d |
|
29 |
28
|
imbi2d |
|
30 |
3 1
|
mgpbas |
|
31 |
|
eqid |
|
32 |
3 31
|
ringidval |
|
33 |
30 32 4
|
mulg0 |
|
34 |
7 33
|
syl |
|
35 |
34
|
oveq1d |
|
36 |
1 2 31
|
srgridm |
|
37 |
5 6 36
|
syl2anc |
|
38 |
34
|
oveq2d |
|
39 |
1 2 31
|
srglidm |
|
40 |
5 6 39
|
syl2anc |
|
41 |
37 38 40
|
3eqtr4rd |
|
42 |
35 41
|
eqtrd |
|
43 |
3
|
srgmgp |
|
44 |
5 43
|
syl |
|
45 |
44
|
adantr |
|
46 |
|
simpr |
|
47 |
7
|
adantr |
|
48 |
3 2
|
mgpplusg |
|
49 |
30 4 48
|
mulgnn0p1 |
|
50 |
45 46 47 49
|
syl3anc |
|
51 |
50
|
oveq1d |
|
52 |
9
|
eqcomd |
|
53 |
52
|
adantr |
|
54 |
53
|
oveq2d |
|
55 |
5
|
adantr |
|
56 |
30 4
|
mulgnn0cl |
|
57 |
45 46 47 56
|
syl3anc |
|
58 |
6
|
adantr |
|
59 |
1 2
|
srgass |
|
60 |
55 57 47 58 59
|
syl13anc |
|
61 |
1 2
|
srgass |
|
62 |
55 57 58 47 61
|
syl13anc |
|
63 |
54 60 62
|
3eqtr4d |
|
64 |
51 63
|
eqtrd |
|
65 |
64
|
adantr |
|
66 |
|
oveq1 |
|
67 |
1 2
|
srgass |
|
68 |
55 58 57 47 67
|
syl13anc |
|
69 |
50
|
eqcomd |
|
70 |
69
|
oveq2d |
|
71 |
68 70
|
eqtrd |
|
72 |
66 71
|
sylan9eqr |
|
73 |
65 72
|
eqtrd |
|
74 |
73
|
ex |
|
75 |
74
|
expcom |
|
76 |
75
|
a2d |
|
77 |
14 19 24 29 42 76
|
nn0ind |
|
78 |
8 77
|
mpcom |
|