Metamath Proof Explorer


Theorem srgpcompp

Description: If two elements of a semiring commute, they also commute if the elements are raised to a higher power. (Contributed by AV, 23-Aug-2019)

Ref Expression
Hypotheses srgpcomp.s S = Base R
srgpcomp.m × ˙ = R
srgpcomp.g G = mulGrp R
srgpcomp.e × ˙ = G
srgpcomp.r φ R SRing
srgpcomp.a φ A S
srgpcomp.b φ B S
srgpcomp.k φ K 0
srgpcomp.c φ A × ˙ B = B × ˙ A
srgpcompp.n φ N 0
Assertion srgpcompp φ N × ˙ A × ˙ K × ˙ B × ˙ A = N + 1 × ˙ A × ˙ K × ˙ B

Proof

Step Hyp Ref Expression
1 srgpcomp.s S = Base R
2 srgpcomp.m × ˙ = R
3 srgpcomp.g G = mulGrp R
4 srgpcomp.e × ˙ = G
5 srgpcomp.r φ R SRing
6 srgpcomp.a φ A S
7 srgpcomp.b φ B S
8 srgpcomp.k φ K 0
9 srgpcomp.c φ A × ˙ B = B × ˙ A
10 srgpcompp.n φ N 0
11 3 srgmgp R SRing G Mnd
12 5 11 syl φ G Mnd
13 3 1 mgpbas S = Base G
14 13 4 mulgnn0cl G Mnd N 0 A S N × ˙ A S
15 12 10 6 14 syl3anc φ N × ˙ A S
16 13 4 mulgnn0cl G Mnd K 0 B S K × ˙ B S
17 12 8 7 16 syl3anc φ K × ˙ B S
18 1 2 srgass R SRing N × ˙ A S K × ˙ B S A S N × ˙ A × ˙ K × ˙ B × ˙ A = N × ˙ A × ˙ K × ˙ B × ˙ A
19 5 15 17 6 18 syl13anc φ N × ˙ A × ˙ K × ˙ B × ˙ A = N × ˙ A × ˙ K × ˙ B × ˙ A
20 1 2 3 4 5 6 7 8 9 srgpcomp φ K × ˙ B × ˙ A = A × ˙ K × ˙ B
21 20 oveq2d φ N × ˙ A × ˙ K × ˙ B × ˙ A = N × ˙ A × ˙ A × ˙ K × ˙ B
22 1 2 srgass R SRing N × ˙ A S A S K × ˙ B S N × ˙ A × ˙ A × ˙ K × ˙ B = N × ˙ A × ˙ A × ˙ K × ˙ B
23 5 15 6 17 22 syl13anc φ N × ˙ A × ˙ A × ˙ K × ˙ B = N × ˙ A × ˙ A × ˙ K × ˙ B
24 21 23 eqtr4d φ N × ˙ A × ˙ K × ˙ B × ˙ A = N × ˙ A × ˙ A × ˙ K × ˙ B
25 3 2 mgpplusg × ˙ = + G
26 13 4 25 mulgnn0p1 G Mnd N 0 A S N + 1 × ˙ A = N × ˙ A × ˙ A
27 12 10 6 26 syl3anc φ N + 1 × ˙ A = N × ˙ A × ˙ A
28 27 eqcomd φ N × ˙ A × ˙ A = N + 1 × ˙ A
29 28 oveq1d φ N × ˙ A × ˙ A × ˙ K × ˙ B = N + 1 × ˙ A × ˙ K × ˙ B
30 19 24 29 3eqtrd φ N × ˙ A × ˙ K × ˙ B × ˙ A = N + 1 × ˙ A × ˙ K × ˙ B