Step |
Hyp |
Ref |
Expression |
1 |
|
srgpcomp.s |
|
2 |
|
srgpcomp.m |
|
3 |
|
srgpcomp.g |
|
4 |
|
srgpcomp.e |
|
5 |
|
srgpcomp.r |
|
6 |
|
srgpcomp.a |
|
7 |
|
srgpcomp.b |
|
8 |
|
srgpcomp.k |
|
9 |
|
srgpcomp.c |
|
10 |
|
srgpcompp.n |
|
11 |
|
srgpcomppsc.t |
|
12 |
|
srgpcomppsc.c |
|
13 |
3 1
|
mgpbas |
|
14 |
3
|
srgmgp |
|
15 |
5 14
|
syl |
|
16 |
13 4 15 10 6
|
mulgnn0cld |
|
17 |
13 4 15 8 7
|
mulgnn0cld |
|
18 |
1 11 2
|
srgmulgass |
|
19 |
18
|
eqcomd |
|
20 |
5 12 16 17 19
|
syl13anc |
|
21 |
20
|
oveq1d |
|
22 |
|
srgmnd |
|
23 |
5 22
|
syl |
|
24 |
1 11 23 12 16
|
mulgnn0cld |
|
25 |
1 2
|
srgass |
|
26 |
5 24 17 6 25
|
syl13anc |
|
27 |
21 26
|
eqtrd |
|
28 |
1 2
|
srgcl |
|
29 |
5 17 6 28
|
syl3anc |
|
30 |
1 11 2
|
srgmulgass |
|
31 |
5 12 16 29 30
|
syl13anc |
|
32 |
1 2
|
srgass |
|
33 |
5 16 17 6 32
|
syl13anc |
|
34 |
33
|
eqcomd |
|
35 |
34
|
oveq2d |
|
36 |
31 35
|
eqtrd |
|
37 |
1 2 3 4 5 6 7 8 9 10
|
srgpcompp |
|
38 |
37
|
oveq2d |
|
39 |
27 36 38
|
3eqtrd |
|