Metamath Proof Explorer


Theorem srgridm

Description: The unit element of a semiring is a right multiplicative identity. (Contributed by NM, 15-Sep-2011) (Revised by Thierry Arnoux, 1-Apr-2018)

Ref Expression
Hypotheses srgidm.b B = Base R
srgidm.t · ˙ = R
srgidm.u 1 ˙ = 1 R
Assertion srgridm R SRing X B X · ˙ 1 ˙ = X

Proof

Step Hyp Ref Expression
1 srgidm.b B = Base R
2 srgidm.t · ˙ = R
3 srgidm.u 1 ˙ = 1 R
4 1 2 3 srgidmlem R SRing X B 1 ˙ · ˙ X = X X · ˙ 1 ˙ = X
5 4 simprd R SRing X B X · ˙ 1 ˙ = X