Metamath Proof Explorer


Theorem srng0

Description: The conjugate of the ring zero is zero. (Contributed by Mario Carneiro, 7-Oct-2015)

Ref Expression
Hypotheses srng0.i ˙ = * R
srng0.z 0 ˙ = 0 R
Assertion srng0 R *-Ring ˙ 0 ˙ = 0 ˙

Proof

Step Hyp Ref Expression
1 srng0.i ˙ = * R
2 srng0.z 0 ˙ = 0 R
3 srngring R *-Ring R Ring
4 ringgrp R Ring R Grp
5 eqid Base R = Base R
6 5 2 grpidcl R Grp 0 ˙ Base R
7 eqid 𝑟𝑓 R = 𝑟𝑓 R
8 5 1 7 stafval 0 ˙ Base R 𝑟𝑓 R 0 ˙ = ˙ 0 ˙
9 3 4 6 8 4syl R *-Ring 𝑟𝑓 R 0 ˙ = ˙ 0 ˙
10 eqid opp r R = opp r R
11 10 7 srngrhm R *-Ring 𝑟𝑓 R R RingHom opp r R
12 rhmghm 𝑟𝑓 R R RingHom opp r R 𝑟𝑓 R R GrpHom opp r R
13 10 2 oppr0 0 ˙ = 0 opp r R
14 2 13 ghmid 𝑟𝑓 R R GrpHom opp r R 𝑟𝑓 R 0 ˙ = 0 ˙
15 11 12 14 3syl R *-Ring 𝑟𝑓 R 0 ˙ = 0 ˙
16 9 15 eqtr3d R *-Ring ˙ 0 ˙ = 0 ˙