Database
BASIC ALGEBRAIC STRUCTURES
Division rings and fields
Star rings
srng0
Next ⟩
issrngd
Metamath Proof Explorer
Ascii
Unicode
Theorem
srng0
Description:
The conjugate of the ring zero is zero.
(Contributed by
Mario Carneiro
, 7-Oct-2015)
Ref
Expression
Hypotheses
srng0.i
⊢
∗
˙
=
*
R
srng0.z
⊢
0
˙
=
0
R
Assertion
srng0
⊢
R
∈
*-Ring
→
∗
˙
⁡
0
˙
=
0
˙
Proof
Step
Hyp
Ref
Expression
1
srng0.i
⊢
∗
˙
=
*
R
2
srng0.z
⊢
0
˙
=
0
R
3
srngring
⊢
R
∈
*-Ring
→
R
∈
Ring
4
ringgrp
⊢
R
∈
Ring
→
R
∈
Grp
5
eqid
⊢
Base
R
=
Base
R
6
5
2
grpidcl
⊢
R
∈
Grp
→
0
˙
∈
Base
R
7
eqid
⊢
∗
𝑟𝑓
⁡
R
=
∗
𝑟𝑓
⁡
R
8
5
1
7
stafval
⊢
0
˙
∈
Base
R
→
∗
𝑟𝑓
⁡
R
⁡
0
˙
=
∗
˙
⁡
0
˙
9
3
4
6
8
4syl
⊢
R
∈
*-Ring
→
∗
𝑟𝑓
⁡
R
⁡
0
˙
=
∗
˙
⁡
0
˙
10
eqid
⊢
opp
r
⁡
R
=
opp
r
⁡
R
11
10
7
srngrhm
⊢
R
∈
*-Ring
→
∗
𝑟𝑓
⁡
R
∈
R
RingHom
opp
r
⁡
R
12
rhmghm
⊢
∗
𝑟𝑓
⁡
R
∈
R
RingHom
opp
r
⁡
R
→
∗
𝑟𝑓
⁡
R
∈
R
GrpHom
opp
r
⁡
R
13
10
2
oppr0
⊢
0
˙
=
0
opp
r
⁡
R
14
2
13
ghmid
⊢
∗
𝑟𝑓
⁡
R
∈
R
GrpHom
opp
r
⁡
R
→
∗
𝑟𝑓
⁡
R
⁡
0
˙
=
0
˙
15
11
12
14
3syl
⊢
R
∈
*-Ring
→
∗
𝑟𝑓
⁡
R
⁡
0
˙
=
0
˙
16
9
15
eqtr3d
⊢
R
∈
*-Ring
→
∗
˙
⁡
0
˙
=
0
˙