Metamath Proof Explorer


Theorem srngadd

Description: The involution function in a star ring distributes over addition. (Contributed by Mario Carneiro, 6-Oct-2015)

Ref Expression
Hypotheses srngcl.i ˙ = * R
srngcl.b B = Base R
srngadd.p + ˙ = + R
Assertion srngadd R *-Ring X B Y B ˙ X + ˙ Y = ˙ X + ˙ ˙ Y

Proof

Step Hyp Ref Expression
1 srngcl.i ˙ = * R
2 srngcl.b B = Base R
3 srngadd.p + ˙ = + R
4 eqid opp r R = opp r R
5 eqid 𝑟𝑓 R = 𝑟𝑓 R
6 4 5 srngrhm R *-Ring 𝑟𝑓 R R RingHom opp r R
7 rhmghm 𝑟𝑓 R R RingHom opp r R 𝑟𝑓 R R GrpHom opp r R
8 6 7 syl R *-Ring 𝑟𝑓 R R GrpHom opp r R
9 4 3 oppradd + ˙ = + opp r R
10 2 3 9 ghmlin 𝑟𝑓 R R GrpHom opp r R X B Y B 𝑟𝑓 R X + ˙ Y = 𝑟𝑓 R X + ˙ 𝑟𝑓 R Y
11 8 10 syl3an1 R *-Ring X B Y B 𝑟𝑓 R X + ˙ Y = 𝑟𝑓 R X + ˙ 𝑟𝑓 R Y
12 srngring R *-Ring R Ring
13 2 3 ringacl R Ring X B Y B X + ˙ Y B
14 12 13 syl3an1 R *-Ring X B Y B X + ˙ Y B
15 2 1 5 stafval X + ˙ Y B 𝑟𝑓 R X + ˙ Y = ˙ X + ˙ Y
16 14 15 syl R *-Ring X B Y B 𝑟𝑓 R X + ˙ Y = ˙ X + ˙ Y
17 2 1 5 stafval X B 𝑟𝑓 R X = ˙ X
18 17 3ad2ant2 R *-Ring X B Y B 𝑟𝑓 R X = ˙ X
19 2 1 5 stafval Y B 𝑟𝑓 R Y = ˙ Y
20 19 3ad2ant3 R *-Ring X B Y B 𝑟𝑓 R Y = ˙ Y
21 18 20 oveq12d R *-Ring X B Y B 𝑟𝑓 R X + ˙ 𝑟𝑓 R Y = ˙ X + ˙ ˙ Y
22 11 16 21 3eqtr3d R *-Ring X B Y B ˙ X + ˙ Y = ˙ X + ˙ ˙ Y