Metamath Proof Explorer


Theorem srngbase

Description: The base set of a constructed star ring. (Contributed by Mario Carneiro, 18-Nov-2013) (Revised by Mario Carneiro, 6-May-2015)

Ref Expression
Hypothesis srngstr.r R = Base ndx B + ndx + ˙ ndx · ˙ * ndx ˙
Assertion srngbase B X B = Base R

Proof

Step Hyp Ref Expression
1 srngstr.r R = Base ndx B + ndx + ˙ ndx · ˙ * ndx ˙
2 1 srngstr R Struct 1 4
3 baseid Base = Slot Base ndx
4 snsstp1 Base ndx B Base ndx B + ndx + ˙ ndx · ˙
5 ssun1 Base ndx B + ndx + ˙ ndx · ˙ Base ndx B + ndx + ˙ ndx · ˙ * ndx ˙
6 5 1 sseqtrri Base ndx B + ndx + ˙ ndx · ˙ R
7 4 6 sstri Base ndx B R
8 2 3 7 strfv B X B = Base R