Metamath Proof Explorer


Theorem srngcl

Description: The involution function in a star ring is closed in the ring. (Contributed by Mario Carneiro, 6-Oct-2015)

Ref Expression
Hypotheses srngcl.i ˙ = * R
srngcl.b B = Base R
Assertion srngcl R *-Ring X B ˙ X B

Proof

Step Hyp Ref Expression
1 srngcl.i ˙ = * R
2 srngcl.b B = Base R
3 eqid 𝑟𝑓 R = 𝑟𝑓 R
4 2 1 3 stafval X B 𝑟𝑓 R X = ˙ X
5 4 adantl R *-Ring X B 𝑟𝑓 R X = ˙ X
6 3 2 srngf1o R *-Ring 𝑟𝑓 R : B 1-1 onto B
7 f1of 𝑟𝑓 R : B 1-1 onto B 𝑟𝑓 R : B B
8 6 7 syl R *-Ring 𝑟𝑓 R : B B
9 8 ffvelrnda R *-Ring X B 𝑟𝑓 R X B
10 5 9 eqeltrrd R *-Ring X B ˙ X B