Metamath Proof Explorer


Theorem srngf1o

Description: The involution function in a star ring is a bijection. (Contributed by Mario Carneiro, 6-Oct-2015)

Ref Expression
Hypotheses srngcnv.i ˙ = 𝑟𝑓 R
srngf1o.b B = Base R
Assertion srngf1o R *-Ring ˙ : B 1-1 onto B

Proof

Step Hyp Ref Expression
1 srngcnv.i ˙ = 𝑟𝑓 R
2 srngf1o.b B = Base R
3 eqid opp r R = opp r R
4 3 1 srngrhm R *-Ring ˙ R RingHom opp r R
5 eqid Base opp r R = Base opp r R
6 2 5 rhmf ˙ R RingHom opp r R ˙ : B Base opp r R
7 ffn ˙ : B Base opp r R ˙ Fn B
8 4 6 7 3syl R *-Ring ˙ Fn B
9 1 srngcnv R *-Ring ˙ = ˙ -1
10 9 fneq1d R *-Ring ˙ Fn B ˙ -1 Fn B
11 8 10 mpbid R *-Ring ˙ -1 Fn B
12 dff1o4 ˙ : B 1-1 onto B ˙ Fn B ˙ -1 Fn B
13 8 11 12 sylanbrc R *-Ring ˙ : B 1-1 onto B