Metamath Proof Explorer


Theorem srngf1o

Description: The involution function in a star ring is a bijection. (Contributed by Mario Carneiro, 6-Oct-2015)

Ref Expression
Hypotheses srngcnv.i ˙=𝑟𝑓R
srngf1o.b B=BaseR
Assertion srngf1o R*-Ring˙:B1-1 ontoB

Proof

Step Hyp Ref Expression
1 srngcnv.i ˙=𝑟𝑓R
2 srngf1o.b B=BaseR
3 eqid opprR=opprR
4 3 1 srngrhm R*-Ring˙RRingHomopprR
5 eqid BaseopprR=BaseopprR
6 2 5 rhmf ˙RRingHomopprR˙:BBaseopprR
7 ffn ˙:BBaseopprR˙FnB
8 4 6 7 3syl R*-Ring˙FnB
9 1 srngcnv R*-Ring˙=˙-1
10 9 fneq1d R*-Ring˙FnB˙-1FnB
11 8 10 mpbid R*-Ring˙-1FnB
12 dff1o4 ˙:B1-1 ontoB˙FnB˙-1FnB
13 8 11 12 sylanbrc R*-Ring˙:B1-1 ontoB