Metamath Proof Explorer


Theorem srnginvl

Description: The involution function of a constructed star ring. (Contributed by Mario Carneiro, 20-Jun-2015)

Ref Expression
Hypothesis srngstr.r R = Base ndx B + ndx + ˙ ndx · ˙ * ndx ˙
Assertion srnginvl ˙ X ˙ = * R

Proof

Step Hyp Ref Expression
1 srngstr.r R = Base ndx B + ndx + ˙ ndx · ˙ * ndx ˙
2 1 srngstr R Struct 1 4
3 starvid 𝑟 = Slot * ndx
4 ssun2 * ndx ˙ Base ndx B + ndx + ˙ ndx · ˙ * ndx ˙
5 4 1 sseqtrri * ndx ˙ R
6 2 3 5 strfv ˙ X ˙ = * R