Metamath Proof Explorer


Theorem srngmulr

Description: The multiplication operation of a constructed star ring. (Contributed by Mario Carneiro, 20-Jun-2015)

Ref Expression
Hypothesis srngstr.r R = Base ndx B + ndx + ˙ ndx · ˙ * ndx ˙
Assertion srngmulr · ˙ X · ˙ = R

Proof

Step Hyp Ref Expression
1 srngstr.r R = Base ndx B + ndx + ˙ ndx · ˙ * ndx ˙
2 1 srngstr R Struct 1 4
3 mulrid 𝑟 = Slot ndx
4 snsstp3 ndx · ˙ Base ndx B + ndx + ˙ ndx · ˙
5 ssun1 Base ndx B + ndx + ˙ ndx · ˙ Base ndx B + ndx + ˙ ndx · ˙ * ndx ˙
6 5 1 sseqtrri Base ndx B + ndx + ˙ ndx · ˙ R
7 4 6 sstri ndx · ˙ R
8 2 3 7 strfv · ˙ X · ˙ = R