Metamath Proof Explorer


Theorem srngnvl

Description: The involution function in a star ring is an involution. (Contributed by Mario Carneiro, 6-Oct-2015)

Ref Expression
Hypotheses srngcl.i ˙ = * R
srngcl.b B = Base R
Assertion srngnvl R *-Ring X B ˙ ˙ X = X

Proof

Step Hyp Ref Expression
1 srngcl.i ˙ = * R
2 srngcl.b B = Base R
3 1 2 srngcl R *-Ring X B ˙ X B
4 eqid 𝑟𝑓 R = 𝑟𝑓 R
5 2 1 4 stafval ˙ X B 𝑟𝑓 R ˙ X = ˙ ˙ X
6 3 5 syl R *-Ring X B 𝑟𝑓 R ˙ X = ˙ ˙ X
7 4 srngcnv R *-Ring 𝑟𝑓 R = 𝑟𝑓 R -1
8 7 adantr R *-Ring X B 𝑟𝑓 R = 𝑟𝑓 R -1
9 8 fveq1d R *-Ring X B 𝑟𝑓 R 𝑟𝑓 R X = 𝑟𝑓 R -1 𝑟𝑓 R X
10 2 1 4 stafval X B 𝑟𝑓 R X = ˙ X
11 10 adantl R *-Ring X B 𝑟𝑓 R X = ˙ X
12 11 fveq2d R *-Ring X B 𝑟𝑓 R 𝑟𝑓 R X = 𝑟𝑓 R ˙ X
13 4 2 srngf1o R *-Ring 𝑟𝑓 R : B 1-1 onto B
14 f1ocnvfv1 𝑟𝑓 R : B 1-1 onto B X B 𝑟𝑓 R -1 𝑟𝑓 R X = X
15 13 14 sylan R *-Ring X B 𝑟𝑓 R -1 𝑟𝑓 R X = X
16 9 12 15 3eqtr3d R *-Ring X B 𝑟𝑓 R ˙ X = X
17 6 16 eqtr3d R *-Ring X B ˙ ˙ X = X