Metamath Proof Explorer


Theorem srngplusg

Description: The addition operation of a constructed star ring. (Contributed by Mario Carneiro, 20-Jun-2015)

Ref Expression
Hypothesis srngstr.r R = Base ndx B + ndx + ˙ ndx · ˙ * ndx ˙
Assertion srngplusg + ˙ X + ˙ = + R

Proof

Step Hyp Ref Expression
1 srngstr.r R = Base ndx B + ndx + ˙ ndx · ˙ * ndx ˙
2 1 srngstr R Struct 1 4
3 plusgid + 𝑔 = Slot + ndx
4 snsstp2 + ndx + ˙ Base ndx B + ndx + ˙ ndx · ˙
5 ssun1 Base ndx B + ndx + ˙ ndx · ˙ Base ndx B + ndx + ˙ ndx · ˙ * ndx ˙
6 5 1 sseqtrri Base ndx B + ndx + ˙ ndx · ˙ R
7 4 6 sstri + ndx + ˙ R
8 2 3 7 strfv + ˙ X + ˙ = + R