Database
BASIC ALGEBRAIC STRUCTURES
Division rings and fields
Star rings
srngring
Next ⟩
srngcnv
Metamath Proof Explorer
Ascii
Unicode
Theorem
srngring
Description:
A star ring is a ring.
(Contributed by
Mario Carneiro
, 6-Oct-2015)
Ref
Expression
Assertion
srngring
⊢
R
∈
*-Ring
→
R
∈
Ring
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
opp
r
⁡
R
=
opp
r
⁡
R
2
eqid
⊢
∗
𝑟𝑓
⁡
R
=
∗
𝑟𝑓
⁡
R
3
1
2
srngrhm
⊢
R
∈
*-Ring
→
∗
𝑟𝑓
⁡
R
∈
R
RingHom
opp
r
⁡
R
4
rhmrcl1
⊢
∗
𝑟𝑓
⁡
R
∈
R
RingHom
opp
r
⁡
R
→
R
∈
Ring
5
3
4
syl
⊢
R
∈
*-Ring
→
R
∈
Ring