Metamath Proof Explorer


Theorem srngstr

Description: A constructed star ring is a structure. (Contributed by Mario Carneiro, 18-Nov-2013) (Revised by Mario Carneiro, 14-Aug-2015)

Ref Expression
Hypothesis srngstr.r R = Base ndx B + ndx + ˙ ndx · ˙ * ndx ˙
Assertion srngstr R Struct 1 4

Proof

Step Hyp Ref Expression
1 srngstr.r R = Base ndx B + ndx + ˙ ndx · ˙ * ndx ˙
2 eqid Base ndx B + ndx + ˙ ndx · ˙ = Base ndx B + ndx + ˙ ndx · ˙
3 2 rngstr Base ndx B + ndx + ˙ ndx · ˙ Struct 1 3
4 4nn 4
5 starvndx * ndx = 4
6 4 5 strle1 * ndx ˙ Struct 4 4
7 3lt4 3 < 4
8 3 6 7 strleun Base ndx B + ndx + ˙ ndx · ˙ * ndx ˙ Struct 1 4
9 1 8 eqbrtri R Struct 1 4