Metamath Proof Explorer


Theorem ss2ab

Description: Class abstractions in a subclass relationship. (Contributed by NM, 3-Jul-1994)

Ref Expression
Assertion ss2ab x | φ x | ψ x φ ψ

Proof

Step Hyp Ref Expression
1 nfab1 _ x x | φ
2 nfab1 _ x x | ψ
3 1 2 dfss2f x | φ x | ψ x x x | φ x x | ψ
4 abid x x | φ φ
5 abid x x | ψ ψ
6 4 5 imbi12i x x | φ x x | ψ φ ψ
7 6 albii x x x | φ x x | ψ x φ ψ
8 3 7 bitri x | φ x | ψ x φ ψ