Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Subclasses and subsets
ss2ab
Next ⟩
abss
Metamath Proof Explorer
Ascii
Unicode
Theorem
ss2ab
Description:
Class abstractions in a subclass relationship.
(Contributed by
NM
, 3-Jul-1994)
Ref
Expression
Assertion
ss2ab
⊢
x
|
φ
⊆
x
|
ψ
↔
∀
x
φ
→
ψ
Proof
Step
Hyp
Ref
Expression
1
nfab1
⊢
Ⅎ
_
x
x
|
φ
2
nfab1
⊢
Ⅎ
_
x
x
|
ψ
3
1
2
dfssf
⊢
x
|
φ
⊆
x
|
ψ
↔
∀
x
x
∈
x
|
φ
→
x
∈
x
|
ψ
4
abid
⊢
x
∈
x
|
φ
↔
φ
5
abid
⊢
x
∈
x
|
ψ
↔
ψ
6
4
5
imbi12i
⊢
x
∈
x
|
φ
→
x
∈
x
|
ψ
↔
φ
→
ψ
7
6
albii
⊢
∀
x
x
∈
x
|
φ
→
x
∈
x
|
ψ
↔
∀
x
φ
→
ψ
8
3
7
bitri
⊢
x
|
φ
⊆
x
|
ψ
↔
∀
x
φ
→
ψ