Metamath Proof Explorer


Theorem ss2abdvALT

Description: Alternate proof of ss2abdv . Shorter, but requiring ax-8 . (Contributed by Steven Nguyen, 28-Jun-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis ss2abdvALT.1 φ ψ χ
Assertion ss2abdvALT φ x | ψ x | χ

Proof

Step Hyp Ref Expression
1 ss2abdvALT.1 φ ψ χ
2 1 sbimdv φ y x ψ y x χ
3 df-clab y x | ψ y x ψ
4 df-clab y x | χ y x χ
5 2 3 4 3imtr4g φ y x | ψ y x | χ
6 5 ssrdv φ x | ψ x | χ