Metamath Proof Explorer


Theorem ss2iun

Description: Subclass theorem for indexed union. (Contributed by NM, 26-Nov-2003) (Proof shortened by Andrew Salmon, 25-Jul-2011)

Ref Expression
Assertion ss2iun xABCxABxAC

Proof

Step Hyp Ref Expression
1 ssel BCyByC
2 1 ralimi xABCxAyByC
3 rexim xAyByCxAyBxAyC
4 2 3 syl xABCxAyBxAyC
5 eliun yxABxAyB
6 eliun yxACxAyC
7 4 5 6 3imtr4g xABCyxAByxAC
8 7 ssrdv xABCxABxAC