Metamath Proof Explorer


Theorem ss2rab

Description: Restricted abstraction classes in a subclass relationship. (Contributed by NM, 30-May-1999)

Ref Expression
Assertion ss2rab x A | φ x A | ψ x A φ ψ

Proof

Step Hyp Ref Expression
1 df-rab x A | φ = x | x A φ
2 df-rab x A | ψ = x | x A ψ
3 1 2 sseq12i x A | φ x A | ψ x | x A φ x | x A ψ
4 ss2ab x | x A φ x | x A ψ x x A φ x A ψ
5 df-ral x A φ ψ x x A φ ψ
6 imdistan x A φ ψ x A φ x A ψ
7 6 albii x x A φ ψ x x A φ x A ψ
8 5 7 bitr2i x x A φ x A ψ x A φ ψ
9 3 4 8 3bitri x A | φ x A | ψ x A φ ψ