Metamath Proof Explorer


Theorem ss2rabdv

Description: Deduction of restricted abstraction subclass from implication. (Contributed by NM, 30-May-2006) Avoid axioms. (Revised by TM, 1-Feb-2026)

Ref Expression
Hypothesis ss2rabdv.1 φ x A ψ χ
Assertion ss2rabdv φ x A | ψ x A | χ

Proof

Step Hyp Ref Expression
1 ss2rabdv.1 φ x A ψ χ
2 1 imdistanda φ x A ψ x A χ
3 2 ss2abdv φ x | x A ψ x | x A χ
4 df-rab x A | ψ = x | x A ψ
5 df-rab x A | χ = x | x A χ
6 3 4 5 3sstr4g φ x A | ψ x A | χ