Metamath Proof Explorer


Theorem ss2rabi

Description: Inference of restricted abstraction subclass from implication. (Contributed by NM, 14-Oct-1999)

Ref Expression
Hypothesis ss2rabi.1 x A φ ψ
Assertion ss2rabi x A | φ x A | ψ

Proof

Step Hyp Ref Expression
1 ss2rabi.1 x A φ ψ
2 ss2rab x A | φ x A | ψ x A φ ψ
3 2 1 mprgbir x A | φ x A | ψ