Metamath Proof Explorer


Theorem ss2ralv

Description: Two quantifications restricted to a subclass. (Contributed by AV, 11-Mar-2023)

Ref Expression
Assertion ss2ralv A B x B y B φ x A y A φ

Proof

Step Hyp Ref Expression
1 ssralv A B y B φ y A φ
2 1 ralimdv A B x B y B φ x B y A φ
3 ssralv A B x B y A φ x A y A φ
4 2 3 syld A B x B y B φ x A y A φ