Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Subclasses and subsets
ss2ralv
Next ⟩
ss2rexv
Metamath Proof Explorer
Ascii
Unicode
Theorem
ss2ralv
Description:
Two quantifications restricted to a subclass.
(Contributed by
AV
, 11-Mar-2023)
Ref
Expression
Assertion
ss2ralv
⊢
A
⊆
B
→
∀
x
∈
B
∀
y
∈
B
φ
→
∀
x
∈
A
∀
y
∈
A
φ
Proof
Step
Hyp
Ref
Expression
1
ssralv
⊢
A
⊆
B
→
∀
y
∈
B
φ
→
∀
y
∈
A
φ
2
1
ralimdv
⊢
A
⊆
B
→
∀
x
∈
B
∀
y
∈
B
φ
→
∀
x
∈
B
∀
y
∈
A
φ
3
ssralv
⊢
A
⊆
B
→
∀
x
∈
B
∀
y
∈
A
φ
→
∀
x
∈
A
∀
y
∈
A
φ
4
2
3
syld
⊢
A
⊆
B
→
∀
x
∈
B
∀
y
∈
B
φ
→
∀
x
∈
A
∀
y
∈
A
φ