Metamath Proof Explorer


Theorem ss2rexv

Description: Two existential quantifications restricted to a subclass. (Contributed by AV, 11-Mar-2023)

Ref Expression
Assertion ss2rexv A B x A y A φ x B y B φ

Proof

Step Hyp Ref Expression
1 ssrexv A B y A φ y B φ
2 1 reximdv A B x A y A φ x A y B φ
3 ssrexv A B x A y B φ x B y B φ
4 2 3 syld A B x A y A φ x B y B φ