Metamath Proof Explorer


Theorem ssab

Description: Subclass of a class abstraction. (Contributed by NM, 16-Aug-2006)

Ref Expression
Assertion ssab A x | φ x x A φ

Proof

Step Hyp Ref Expression
1 abid2 x | x A = A
2 1 sseq1i x | x A x | φ A x | φ
3 ss2ab x | x A x | φ x x A φ
4 2 3 bitr3i A x | φ x x A φ