Metamath Proof Explorer


Theorem ssbl

Description: The size of a ball increases monotonically with its radius. (Contributed by NM, 20-Sep-2007) (Revised by Mario Carneiro, 24-Aug-2015)

Ref Expression
Assertion ssbl D ∞Met X P X R * S * R S P ball D R P ball D S

Proof

Step Hyp Ref Expression
1 simp1l D ∞Met X P X R * S * R S D ∞Met X
2 simp1r D ∞Met X P X R * S * R S P X
3 simp2l D ∞Met X P X R * S * R S R *
4 simp2r D ∞Met X P X R * S * R S S *
5 xmet0 D ∞Met X P X P D P = 0
6 5 3ad2ant1 D ∞Met X P X R * S * R S P D P = 0
7 0re 0
8 6 7 eqeltrdi D ∞Met X P X R * S * R S P D P
9 simp3 D ∞Met X P X R * S * R S R S
10 xsubge0 S * R * 0 S + 𝑒 R R S
11 4 3 10 syl2anc D ∞Met X P X R * S * R S 0 S + 𝑒 R R S
12 9 11 mpbird D ∞Met X P X R * S * R S 0 S + 𝑒 R
13 6 12 eqbrtrd D ∞Met X P X R * S * R S P D P S + 𝑒 R
14 1 2 2 3 4 8 13 xblss2 D ∞Met X P X R * S * R S P ball D R P ball D S