Metamath Proof Explorer


Theorem ssblex

Description: A nested ball exists whose radius is less than any desired amount. (Contributed by NM, 20-Sep-2007) (Revised by Mario Carneiro, 12-Nov-2013)

Ref Expression
Assertion ssblex D ∞Met X P X R + S + x + x < R P ball D x P ball D S

Proof

Step Hyp Ref Expression
1 simprl D ∞Met X P X R + S + R +
2 1 rphalfcld D ∞Met X P X R + S + R 2 +
3 simprr D ∞Met X P X R + S + S +
4 2 3 ifcld D ∞Met X P X R + S + if R 2 S R 2 S +
5 4 rpred D ∞Met X P X R + S + if R 2 S R 2 S
6 2 rpred D ∞Met X P X R + S + R 2
7 1 rpred D ∞Met X P X R + S + R
8 3 rpred D ∞Met X P X R + S + S
9 min1 R 2 S if R 2 S R 2 S R 2
10 6 8 9 syl2anc D ∞Met X P X R + S + if R 2 S R 2 S R 2
11 1 rpgt0d D ∞Met X P X R + S + 0 < R
12 halfpos R 0 < R R 2 < R
13 7 12 syl D ∞Met X P X R + S + 0 < R R 2 < R
14 11 13 mpbid D ∞Met X P X R + S + R 2 < R
15 5 6 7 10 14 lelttrd D ∞Met X P X R + S + if R 2 S R 2 S < R
16 simpl D ∞Met X P X R + S + D ∞Met X P X
17 4 rpxrd D ∞Met X P X R + S + if R 2 S R 2 S *
18 3 rpxrd D ∞Met X P X R + S + S *
19 min2 R 2 S if R 2 S R 2 S S
20 6 8 19 syl2anc D ∞Met X P X R + S + if R 2 S R 2 S S
21 ssbl D ∞Met X P X if R 2 S R 2 S * S * if R 2 S R 2 S S P ball D if R 2 S R 2 S P ball D S
22 16 17 18 20 21 syl121anc D ∞Met X P X R + S + P ball D if R 2 S R 2 S P ball D S
23 breq1 x = if R 2 S R 2 S x < R if R 2 S R 2 S < R
24 oveq2 x = if R 2 S R 2 S P ball D x = P ball D if R 2 S R 2 S
25 24 sseq1d x = if R 2 S R 2 S P ball D x P ball D S P ball D if R 2 S R 2 S P ball D S
26 23 25 anbi12d x = if R 2 S R 2 S x < R P ball D x P ball D S if R 2 S R 2 S < R P ball D if R 2 S R 2 S P ball D S
27 26 rspcev if R 2 S R 2 S + if R 2 S R 2 S < R P ball D if R 2 S R 2 S P ball D S x + x < R P ball D x P ball D S
28 4 15 22 27 syl12anc D ∞Met X P X R + S + x + x < R P ball D x P ball D S