| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssbnd.2 |
|
| 2 |
|
0re |
|
| 3 |
2
|
ne0ii |
|
| 4 |
|
0ss |
|
| 5 |
|
sseq1 |
|
| 6 |
4 5
|
mpbiri |
|
| 7 |
6
|
ralrimivw |
|
| 8 |
|
r19.2z |
|
| 9 |
3 7 8
|
sylancr |
|
| 10 |
9
|
a1i |
|
| 11 |
|
isbnd2 |
|
| 12 |
|
simplll |
|
| 13 |
1
|
dmeqi |
|
| 14 |
|
dmres |
|
| 15 |
13 14
|
eqtri |
|
| 16 |
|
xmetf |
|
| 17 |
16
|
fdmd |
|
| 18 |
15 17
|
eqtr3id |
|
| 19 |
|
dfss2 |
|
| 20 |
18 19
|
sylibr |
|
| 21 |
20
|
ad2antlr |
|
| 22 |
|
metf |
|
| 23 |
22
|
fdmd |
|
| 24 |
23
|
ad3antrrr |
|
| 25 |
21 24
|
sseqtrd |
|
| 26 |
|
dmss |
|
| 27 |
25 26
|
syl |
|
| 28 |
|
dmxpid |
|
| 29 |
|
dmxpid |
|
| 30 |
27 28 29
|
3sstr3g |
|
| 31 |
|
simprl |
|
| 32 |
30 31
|
sseldd |
|
| 33 |
|
simpllr |
|
| 34 |
|
metcl |
|
| 35 |
12 32 33 34
|
syl3anc |
|
| 36 |
|
rpre |
|
| 37 |
36
|
ad2antll |
|
| 38 |
35 37
|
readdcld |
|
| 39 |
|
metxmet |
|
| 40 |
12 39
|
syl |
|
| 41 |
32 31
|
elind |
|
| 42 |
|
rpxr |
|
| 43 |
42
|
ad2antll |
|
| 44 |
1
|
blres |
|
| 45 |
40 41 43 44
|
syl3anc |
|
| 46 |
|
inss1 |
|
| 47 |
35
|
leidd |
|
| 48 |
35
|
recnd |
|
| 49 |
37
|
recnd |
|
| 50 |
48 49
|
pncand |
|
| 51 |
47 50
|
breqtrrd |
|
| 52 |
|
blss2 |
|
| 53 |
40 32 33 37 38 51 52
|
syl33anc |
|
| 54 |
46 53
|
sstrid |
|
| 55 |
45 54
|
eqsstrd |
|
| 56 |
|
oveq2 |
|
| 57 |
56
|
sseq2d |
|
| 58 |
57
|
rspcev |
|
| 59 |
38 55 58
|
syl2anc |
|
| 60 |
|
sseq1 |
|
| 61 |
60
|
rexbidv |
|
| 62 |
59 61
|
syl5ibrcom |
|
| 63 |
62
|
rexlimdvva |
|
| 64 |
63
|
expimpd |
|
| 65 |
11 64
|
biimtrid |
|
| 66 |
65
|
expdimp |
|
| 67 |
10 66
|
pm2.61dne |
|
| 68 |
67
|
ex |
|
| 69 |
|
simprr |
|
| 70 |
|
xpss12 |
|
| 71 |
69 69 70
|
syl2anc |
|
| 72 |
71
|
resabs1d |
|
| 73 |
72 1
|
eqtr4di |
|
| 74 |
|
blbnd |
|
| 75 |
39 74
|
syl3an1 |
|
| 76 |
75
|
3expa |
|
| 77 |
76
|
adantrr |
|
| 78 |
|
bndss |
|
| 79 |
77 69 78
|
syl2anc |
|
| 80 |
73 79
|
eqeltrrd |
|
| 81 |
80
|
rexlimdvaa |
|
| 82 |
68 81
|
impbid |
|