Metamath Proof Explorer


Theorem ssc1

Description: Infer subset relation on objects from the subcategory subset relation. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses isssc.1 φ H Fn S × S
isssc.2 φ J Fn T × T
ssc1.3 φ H cat J
Assertion ssc1 φ S T

Proof

Step Hyp Ref Expression
1 isssc.1 φ H Fn S × S
2 isssc.2 φ J Fn T × T
3 ssc1.3 φ H cat J
4 sscrel Rel cat
5 4 brrelex2i H cat J J V
6 3 5 syl φ J V
7 2 ssclem φ J V T V
8 6 7 mpbid φ T V
9 1 2 8 isssc φ H cat J S T x S y S x H y x J y
10 3 9 mpbid φ S T x S y S x H y x J y
11 10 simpld φ S T