Metamath Proof Explorer


Theorem sscfn1

Description: The subcategory subset relation is defined on functions with square domain. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses sscfn1.1 φ H cat J
sscfn1.2 φ S = dom dom H
Assertion sscfn1 φ H Fn S × S

Proof

Step Hyp Ref Expression
1 sscfn1.1 φ H cat J
2 sscfn1.2 φ S = dom dom H
3 brssc H cat J t J Fn t × t s 𝒫 t H x s × s 𝒫 J x
4 1 3 sylib φ t J Fn t × t s 𝒫 t H x s × s 𝒫 J x
5 ixpfn H x s × s 𝒫 J x H Fn s × s
6 simpr φ H Fn s × s H Fn s × s
7 2 adantr φ H Fn s × s S = dom dom H
8 fndm H Fn s × s dom H = s × s
9 8 adantl φ H Fn s × s dom H = s × s
10 9 dmeqd φ H Fn s × s dom dom H = dom s × s
11 dmxpid dom s × s = s
12 10 11 eqtrdi φ H Fn s × s dom dom H = s
13 7 12 eqtr2d φ H Fn s × s s = S
14 13 sqxpeqd φ H Fn s × s s × s = S × S
15 14 fneq2d φ H Fn s × s H Fn s × s H Fn S × S
16 6 15 mpbid φ H Fn s × s H Fn S × S
17 16 ex φ H Fn s × s H Fn S × S
18 5 17 syl5 φ H x s × s 𝒫 J x H Fn S × S
19 18 rexlimdvw φ s 𝒫 t H x s × s 𝒫 J x H Fn S × S
20 19 adantld φ J Fn t × t s 𝒫 t H x s × s 𝒫 J x H Fn S × S
21 20 exlimdv φ t J Fn t × t s 𝒫 t H x s × s 𝒫 J x H Fn S × S
22 4 21 mpd φ H Fn S × S