Metamath Proof Explorer


Theorem sscon

Description: Contraposition law for subsets. Exercise 15 of TakeutiZaring p. 22. (Contributed by NM, 22-Mar-1998)

Ref Expression
Assertion sscon A B C B C A

Proof

Step Hyp Ref Expression
1 ssel A B x A x B
2 1 con3d A B ¬ x B ¬ x A
3 2 anim2d A B x C ¬ x B x C ¬ x A
4 eldif x C B x C ¬ x B
5 eldif x C A x C ¬ x A
6 3 4 5 3imtr4g A B x C B x C A
7 6 ssrdv A B C B C A