Metamath Proof Explorer


Theorem sscon34b

Description: Relative complementation reverses inclusion of subclasses. Relativized version of complss . (Contributed by RP, 3-Jun-2021)

Ref Expression
Assertion sscon34b A C B C A B C B C A

Proof

Step Hyp Ref Expression
1 sscon A B C B C A
2 sscon C B C A C C A C C B
3 dfss4 A C C C A = A
4 3 biimpi A C C C A = A
5 4 adantr A C B C C C A = A
6 dfss4 B C C C B = B
7 6 biimpi B C C C B = B
8 7 adantl A C B C C C B = B
9 5 8 sseq12d A C B C C C A C C B A B
10 2 9 syl5ib A C B C C B C A A B
11 1 10 impbid2 A C B C A B C B C A