Metamath Proof Explorer


Theorem ssconb

Description: Contraposition law for subsets. (Contributed by NM, 22-Mar-1998)

Ref Expression
Assertion ssconb A C B C A C B B C A

Proof

Step Hyp Ref Expression
1 ssel A C x A x C
2 ssel B C x B x C
3 pm5.1 x A x C x B x C x A x C x B x C
4 1 2 3 syl2an A C B C x A x C x B x C
5 con2b x A ¬ x B x B ¬ x A
6 5 a1i A C B C x A ¬ x B x B ¬ x A
7 4 6 anbi12d A C B C x A x C x A ¬ x B x B x C x B ¬ x A
8 jcab x A x C ¬ x B x A x C x A ¬ x B
9 jcab x B x C ¬ x A x B x C x B ¬ x A
10 7 8 9 3bitr4g A C B C x A x C ¬ x B x B x C ¬ x A
11 eldif x C B x C ¬ x B
12 11 imbi2i x A x C B x A x C ¬ x B
13 eldif x C A x C ¬ x A
14 13 imbi2i x B x C A x B x C ¬ x A
15 10 12 14 3bitr4g A C B C x A x C B x B x C A
16 15 albidv A C B C x x A x C B x x B x C A
17 dfss2 A C B x x A x C B
18 dfss2 B C A x x B x C A
19 16 17 18 3bitr4g A C B C A C B B C A