Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The difference, union, and intersection of two classes
The difference of two classes
ssconb
Next ⟩
sscon
Metamath Proof Explorer
Ascii
Unicode
Theorem
ssconb
Description:
Contraposition law for subsets.
(Contributed by
NM
, 22-Mar-1998)
Ref
Expression
Assertion
ssconb
⊢
A
⊆
C
∧
B
⊆
C
→
A
⊆
C
∖
B
↔
B
⊆
C
∖
A
Proof
Step
Hyp
Ref
Expression
1
ssel
⊢
A
⊆
C
→
x
∈
A
→
x
∈
C
2
ssel
⊢
B
⊆
C
→
x
∈
B
→
x
∈
C
3
pm5.1
⊢
x
∈
A
→
x
∈
C
∧
x
∈
B
→
x
∈
C
→
x
∈
A
→
x
∈
C
↔
x
∈
B
→
x
∈
C
4
1
2
3
syl2an
⊢
A
⊆
C
∧
B
⊆
C
→
x
∈
A
→
x
∈
C
↔
x
∈
B
→
x
∈
C
5
con2b
⊢
x
∈
A
→
¬
x
∈
B
↔
x
∈
B
→
¬
x
∈
A
6
5
a1i
⊢
A
⊆
C
∧
B
⊆
C
→
x
∈
A
→
¬
x
∈
B
↔
x
∈
B
→
¬
x
∈
A
7
4
6
anbi12d
⊢
A
⊆
C
∧
B
⊆
C
→
x
∈
A
→
x
∈
C
∧
x
∈
A
→
¬
x
∈
B
↔
x
∈
B
→
x
∈
C
∧
x
∈
B
→
¬
x
∈
A
8
jcab
⊢
x
∈
A
→
x
∈
C
∧
¬
x
∈
B
↔
x
∈
A
→
x
∈
C
∧
x
∈
A
→
¬
x
∈
B
9
jcab
⊢
x
∈
B
→
x
∈
C
∧
¬
x
∈
A
↔
x
∈
B
→
x
∈
C
∧
x
∈
B
→
¬
x
∈
A
10
7
8
9
3bitr4g
⊢
A
⊆
C
∧
B
⊆
C
→
x
∈
A
→
x
∈
C
∧
¬
x
∈
B
↔
x
∈
B
→
x
∈
C
∧
¬
x
∈
A
11
eldif
⊢
x
∈
C
∖
B
↔
x
∈
C
∧
¬
x
∈
B
12
11
imbi2i
⊢
x
∈
A
→
x
∈
C
∖
B
↔
x
∈
A
→
x
∈
C
∧
¬
x
∈
B
13
eldif
⊢
x
∈
C
∖
A
↔
x
∈
C
∧
¬
x
∈
A
14
13
imbi2i
⊢
x
∈
B
→
x
∈
C
∖
A
↔
x
∈
B
→
x
∈
C
∧
¬
x
∈
A
15
10
12
14
3bitr4g
⊢
A
⊆
C
∧
B
⊆
C
→
x
∈
A
→
x
∈
C
∖
B
↔
x
∈
B
→
x
∈
C
∖
A
16
15
albidv
⊢
A
⊆
C
∧
B
⊆
C
→
∀
x
x
∈
A
→
x
∈
C
∖
B
↔
∀
x
x
∈
B
→
x
∈
C
∖
A
17
dfss2
⊢
A
⊆
C
∖
B
↔
∀
x
x
∈
A
→
x
∈
C
∖
B
18
dfss2
⊢
B
⊆
C
∖
A
↔
∀
x
x
∈
B
→
x
∈
C
∖
A
19
16
17
18
3bitr4g
⊢
A
⊆
C
∧
B
⊆
C
→
A
⊆
C
∖
B
↔
B
⊆
C
∖
A