Metamath Proof Explorer


Theorem sscpwex

Description: An analogue of pwex for the subcategory subset relation: The collection of subcategory subsets of a given set J is a set. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Assertion sscpwex h | h cat J V

Proof

Step Hyp Ref Expression
1 ovex 𝒫 ran J 𝑝𝑚 dom J V
2 brssc h cat J t J Fn t × t s 𝒫 t h x s × s 𝒫 J x
3 simpl J Fn t × t s 𝒫 t h x s × s 𝒫 J x J Fn t × t
4 vex t V
5 4 4 xpex t × t V
6 fnex J Fn t × t t × t V J V
7 3 5 6 sylancl J Fn t × t s 𝒫 t h x s × s 𝒫 J x J V
8 rnexg J V ran J V
9 uniexg ran J V ran J V
10 pwexg ran J V 𝒫 ran J V
11 7 8 9 10 4syl J Fn t × t s 𝒫 t h x s × s 𝒫 J x 𝒫 ran J V
12 fndm J Fn t × t dom J = t × t
13 12 adantr J Fn t × t s 𝒫 t h x s × s 𝒫 J x dom J = t × t
14 13 5 eqeltrdi J Fn t × t s 𝒫 t h x s × s 𝒫 J x dom J V
15 ss2ixp x s × s 𝒫 J x 𝒫 ran J x s × s 𝒫 J x x s × s 𝒫 ran J
16 fvssunirn J x ran J
17 16 sspwi 𝒫 J x 𝒫 ran J
18 17 a1i x s × s 𝒫 J x 𝒫 ran J
19 15 18 mprg x s × s 𝒫 J x x s × s 𝒫 ran J
20 simprr J Fn t × t s 𝒫 t h x s × s 𝒫 J x h x s × s 𝒫 J x
21 19 20 sselid J Fn t × t s 𝒫 t h x s × s 𝒫 J x h x s × s 𝒫 ran J
22 vex h V
23 22 elixpconst h x s × s 𝒫 ran J h : s × s 𝒫 ran J
24 21 23 sylib J Fn t × t s 𝒫 t h x s × s 𝒫 J x h : s × s 𝒫 ran J
25 elpwi s 𝒫 t s t
26 25 ad2antrl J Fn t × t s 𝒫 t h x s × s 𝒫 J x s t
27 xpss12 s t s t s × s t × t
28 26 26 27 syl2anc J Fn t × t s 𝒫 t h x s × s 𝒫 J x s × s t × t
29 28 13 sseqtrrd J Fn t × t s 𝒫 t h x s × s 𝒫 J x s × s dom J
30 elpm2r 𝒫 ran J V dom J V h : s × s 𝒫 ran J s × s dom J h 𝒫 ran J 𝑝𝑚 dom J
31 11 14 24 29 30 syl22anc J Fn t × t s 𝒫 t h x s × s 𝒫 J x h 𝒫 ran J 𝑝𝑚 dom J
32 31 rexlimdvaa J Fn t × t s 𝒫 t h x s × s 𝒫 J x h 𝒫 ran J 𝑝𝑚 dom J
33 32 imp J Fn t × t s 𝒫 t h x s × s 𝒫 J x h 𝒫 ran J 𝑝𝑚 dom J
34 33 exlimiv t J Fn t × t s 𝒫 t h x s × s 𝒫 J x h 𝒫 ran J 𝑝𝑚 dom J
35 2 34 sylbi h cat J h 𝒫 ran J 𝑝𝑚 dom J
36 35 abssi h | h cat J 𝒫 ran J 𝑝𝑚 dom J
37 1 36 ssexi h | h cat J V