Description: An analogue of pwex for the subcategory subset relation: The collection of subcategory subsets of a given set J is a set. (Contributed by Mario Carneiro, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sscpwex | |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex | |
|
| 2 | brssc | |
|
| 3 | simpl | |
|
| 4 | vex | |
|
| 5 | 4 4 | xpex | |
| 6 | fnex | |
|
| 7 | 3 5 6 | sylancl | |
| 8 | rnexg | |
|
| 9 | uniexg | |
|
| 10 | pwexg | |
|
| 11 | 7 8 9 10 | 4syl | |
| 12 | fndm | |
|
| 13 | 12 | adantr | |
| 14 | 13 5 | eqeltrdi | |
| 15 | ss2ixp | |
|
| 16 | fvssunirn | |
|
| 17 | 16 | sspwi | |
| 18 | 17 | a1i | |
| 19 | 15 18 | mprg | |
| 20 | simprr | |
|
| 21 | 19 20 | sselid | |
| 22 | vex | |
|
| 23 | 22 | elixpconst | |
| 24 | 21 23 | sylib | |
| 25 | elpwi | |
|
| 26 | 25 | ad2antrl | |
| 27 | xpss12 | |
|
| 28 | 26 26 27 | syl2anc | |
| 29 | 28 13 | sseqtrrd | |
| 30 | elpm2r | |
|
| 31 | 11 14 24 29 30 | syl22anc | |
| 32 | 31 | rexlimdvaa | |
| 33 | 32 | imp | |
| 34 | 33 | exlimiv | |
| 35 | 2 34 | sylbi | |
| 36 | 35 | abssi | |
| 37 | 1 36 | ssexi | |