Metamath Proof Explorer


Theorem ssct

Description: Any subset of a countable set is countable. (Contributed by Thierry Arnoux, 31-Jan-2017)

Ref Expression
Assertion ssct A B B ω A ω

Proof

Step Hyp Ref Expression
1 ctex B ω B V
2 ssdomg B V A B A B
3 1 2 syl B ω A B A B
4 3 impcom A B B ω A B
5 domtr A B B ω A ω
6 4 5 sylancom A B B ω A ω