Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|
2 |
|
eqidd |
|
3 |
1 2
|
sscfn1 |
|
4 |
|
eqidd |
|
5 |
1 4
|
sscfn2 |
|
6 |
3 5 1
|
ssc1 |
|
7 |
|
simpr |
|
8 |
|
eqidd |
|
9 |
7 8
|
sscfn2 |
|
10 |
5 9 7
|
ssc1 |
|
11 |
6 10
|
sstrd |
|
12 |
3
|
adantr |
|
13 |
1
|
adantr |
|
14 |
|
simprl |
|
15 |
|
simprr |
|
16 |
12 13 14 15
|
ssc2 |
|
17 |
5
|
adantr |
|
18 |
7
|
adantr |
|
19 |
6
|
adantr |
|
20 |
19 14
|
sseldd |
|
21 |
19 15
|
sseldd |
|
22 |
17 18 20 21
|
ssc2 |
|
23 |
16 22
|
sstrd |
|
24 |
23
|
ralrimivva |
|
25 |
|
sscrel |
|
26 |
25
|
brrelex2i |
|
27 |
26
|
adantl |
|
28 |
|
dmexg |
|
29 |
|
dmexg |
|
30 |
27 28 29
|
3syl |
|
31 |
3 9 30
|
isssc |
|
32 |
11 24 31
|
mpbir2and |
|