Metamath Proof Explorer


Theorem ssd

Description: A sufficient condition for a subclass relationship. (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Hypothesis ssd.1 φ x A x B
Assertion ssd φ A B

Proof

Step Hyp Ref Expression
1 ssd.1 φ x A x B
2 nfv x φ
3 2 1 ssdf φ A B