Metamath Proof Explorer


Theorem ssdec

Description: Inclusion relation for a monotonic sequence of sets. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses ssdec.1 φ N M
ssdec.2 φ m M ..^ N F m + 1 F m
Assertion ssdec φ F N F M

Proof

Step Hyp Ref Expression
1 ssdec.1 φ N M
2 ssdec.2 φ m M ..^ N F m + 1 F m
3 eluzel2 N M M
4 1 3 syl φ M
5 eluzelz N M N
6 1 5 syl φ N
7 4 6 jca φ M N
8 eluzle N M M N
9 1 8 syl φ M N
10 6 zred φ N
11 10 leidd φ N N
12 6 9 11 3jca φ N M N N N
13 7 12 jca φ M N N M N N N
14 fveq2 n = M F n = F M
15 14 sseq1d n = M F n F M F M F M
16 15 imbi2d n = M φ F n F M φ F M F M
17 fveq2 n = m F n = F m
18 17 sseq1d n = m F n F M F m F M
19 18 imbi2d n = m φ F n F M φ F m F M
20 fveq2 n = m + 1 F n = F m + 1
21 20 sseq1d n = m + 1 F n F M F m + 1 F M
22 21 imbi2d n = m + 1 φ F n F M φ F m + 1 F M
23 fveq2 n = N F n = F N
24 23 sseq1d n = N F n F M F N F M
25 24 imbi2d n = N φ F n F M φ F N F M
26 ssidd φ F M F M
27 26 a1i M N M N φ F M F M
28 simpr M N m M m m < N φ φ
29 simplll M N m M m m < N φ M
30 simplr1 M N m M m m < N φ m
31 simplr2 M N m M m m < N φ M m
32 29 30 31 3jca M N m M m m < N φ M m M m
33 eluz2 m M M m M m
34 32 33 sylibr M N m M m m < N φ m M
35 simpllr M N m M m m < N φ N
36 simplr3 M N m M m m < N φ m < N
37 34 35 36 3jca M N m M m m < N φ m M N m < N
38 elfzo2 m M ..^ N m M N m < N
39 37 38 sylibr M N m M m m < N φ m M ..^ N
40 28 39 2 syl2anc M N m M m m < N φ F m + 1 F m
41 40 3adant2 M N m M m m < N φ F m F M φ F m + 1 F m
42 simpr φ F m F M φ φ
43 simpl φ F m F M φ φ F m F M
44 pm3.35 φ φ F m F M F m F M
45 42 43 44 syl2anc φ F m F M φ F m F M
46 45 3adant1 M N m M m m < N φ F m F M φ F m F M
47 41 46 sstrd M N m M m m < N φ F m F M φ F m + 1 F M
48 47 3exp M N m M m m < N φ F m F M φ F m + 1 F M
49 16 19 22 25 27 48 fzind M N N M N N N φ F N F M
50 13 49 mpcom φ F N F M