Metamath Proof Explorer


Theorem ssdf

Description: A sufficient condition for a subclass relationship. (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Hypotheses ssdf.1 x φ
ssdf.2 φ x A x B
Assertion ssdf φ A B

Proof

Step Hyp Ref Expression
1 ssdf.1 x φ
2 ssdf.2 φ x A x B
3 2 ex φ x A x B
4 1 3 ralrimi φ x A x B
5 dfss3 A B x A x B
6 4 5 sylibr φ A B