Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The difference, union, and intersection of two classes
The difference of two classes
ssdif
Next ⟩
ssdifd
Metamath Proof Explorer
Ascii
Unicode
Theorem
ssdif
Description:
Difference law for subsets.
(Contributed by
NM
, 28-May-1998)
Ref
Expression
Assertion
ssdif
⊢
A
⊆
B
→
A
∖
C
⊆
B
∖
C
Proof
Step
Hyp
Ref
Expression
1
ssel
⊢
A
⊆
B
→
x
∈
A
→
x
∈
B
2
1
anim1d
⊢
A
⊆
B
→
x
∈
A
∧
¬
x
∈
C
→
x
∈
B
∧
¬
x
∈
C
3
eldif
⊢
x
∈
A
∖
C
↔
x
∈
A
∧
¬
x
∈
C
4
eldif
⊢
x
∈
B
∖
C
↔
x
∈
B
∧
¬
x
∈
C
5
2
3
4
3imtr4g
⊢
A
⊆
B
→
x
∈
A
∖
C
→
x
∈
B
∖
C
6
5
ssrdv
⊢
A
⊆
B
→
A
∖
C
⊆
B
∖
C