Metamath Proof Explorer


Theorem ssdif

Description: Difference law for subsets. (Contributed by NM, 28-May-1998)

Ref Expression
Assertion ssdif A B A C B C

Proof

Step Hyp Ref Expression
1 ssel A B x A x B
2 1 anim1d A B x A ¬ x C x B ¬ x C
3 eldif x A C x A ¬ x C
4 eldif x B C x B ¬ x C
5 2 3 4 3imtr4g A B x A C x B C
6 5 ssrdv A B A C B C