Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The difference, union, and intersection of two classes
Combinations of difference, union, and intersection of two classes
ssdifim
Next ⟩
ssdifsym
Metamath Proof Explorer
Ascii
Unicode
Theorem
ssdifim
Description:
Implication of a class difference with a subclass.
(Contributed by
AV
, 3-Jan-2022)
Ref
Expression
Assertion
ssdifim
⊢
A
⊆
V
∧
B
=
V
∖
A
→
A
=
V
∖
B
Proof
Step
Hyp
Ref
Expression
1
dfss4
⊢
A
⊆
V
↔
V
∖
V
∖
A
=
A
2
eqcom
⊢
V
∖
V
∖
A
=
A
↔
A
=
V
∖
V
∖
A
3
1
2
sylbb
⊢
A
⊆
V
→
A
=
V
∖
V
∖
A
4
difeq2
⊢
B
=
V
∖
A
→
V
∖
B
=
V
∖
V
∖
A
5
4
eqcomd
⊢
B
=
V
∖
A
→
V
∖
V
∖
A
=
V
∖
B
6
3
5
sylan9eq
⊢
A
⊆
V
∧
B
=
V
∖
A
→
A
=
V
∖
B