Metamath Proof Explorer


Theorem ssdifim

Description: Implication of a class difference with a subclass. (Contributed by AV, 3-Jan-2022)

Ref Expression
Assertion ssdifim A V B = V A A = V B

Proof

Step Hyp Ref Expression
1 dfss4 A V V V A = A
2 eqcom V V A = A A = V V A
3 1 2 sylbb A V A = V V A
4 difeq2 B = V A V B = V V A
5 4 eqcomd B = V A V V A = V B
6 3 5 sylan9eq A V B = V A A = V B