Metamath Proof Explorer


Theorem ssdifin0

Description: A subset of a difference does not intersect the subtrahend. (Contributed by Jeff Hankins, 1-Sep-2013) (Proof shortened by Mario Carneiro, 24-Aug-2015)

Ref Expression
Assertion ssdifin0 A B C A C =

Proof

Step Hyp Ref Expression
1 ssrin A B C A C B C C
2 disjdifr B C C =
3 sseq0 A C B C C B C C = A C =
4 1 2 3 sylancl A B C A C =