Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The difference, union, and intersection of two classes
Combinations of difference, union, and intersection of two classes
ssdifsym
Next ⟩
dfss5
Metamath Proof Explorer
Ascii
Unicode
Theorem
ssdifsym
Description:
Symmetric class differences for subclasses.
(Contributed by
AV
, 3-Jan-2022)
Ref
Expression
Assertion
ssdifsym
⊢
A
⊆
V
∧
B
⊆
V
→
B
=
V
∖
A
↔
A
=
V
∖
B
Proof
Step
Hyp
Ref
Expression
1
ssdifim
⊢
A
⊆
V
∧
B
=
V
∖
A
→
A
=
V
∖
B
2
1
ex
⊢
A
⊆
V
→
B
=
V
∖
A
→
A
=
V
∖
B
3
2
adantr
⊢
A
⊆
V
∧
B
⊆
V
→
B
=
V
∖
A
→
A
=
V
∖
B
4
ssdifim
⊢
B
⊆
V
∧
A
=
V
∖
B
→
B
=
V
∖
A
5
4
ex
⊢
B
⊆
V
→
A
=
V
∖
B
→
B
=
V
∖
A
6
5
adantl
⊢
A
⊆
V
∧
B
⊆
V
→
A
=
V
∖
B
→
B
=
V
∖
A
7
3
6
impbid
⊢
A
⊆
V
∧
B
⊆
V
→
B
=
V
∖
A
↔
A
=
V
∖
B