Metamath Proof Explorer


Theorem ssdifsym

Description: Symmetric class differences for subclasses. (Contributed by AV, 3-Jan-2022)

Ref Expression
Assertion ssdifsym A V B V B = V A A = V B

Proof

Step Hyp Ref Expression
1 ssdifim A V B = V A A = V B
2 1 ex A V B = V A A = V B
3 2 adantr A V B V B = V A A = V B
4 ssdifim B V A = V B B = V A
5 4 ex B V A = V B B = V A
6 5 adantl A V B V A = V B B = V A
7 3 6 impbid A V B V B = V A A = V B