Metamath Proof Explorer


Theorem ssdmd1

Description: Ordering implies the dual modular pair property. Remark in MaedaMaeda p. 1. (Contributed by NM, 22-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion ssdmd1 A C B C A B A 𝑀 * B

Proof

Step Hyp Ref Expression
1 choccl B C B C
2 choccl A C A C
3 ssmd2 B C A C B A A 𝑀 B
4 3 3expia B C A C B A A 𝑀 B
5 1 2 4 syl2anr A C B C B A A 𝑀 B
6 chsscon3 A C B C A B B A
7 dmdmd A C B C A 𝑀 * B A 𝑀 B
8 5 6 7 3imtr4d A C B C A B A 𝑀 * B
9 8 3impia A C B C A B A 𝑀 * B