Metamath Proof Explorer


Theorem ssdmd2

Description: Ordering implies the dual modular pair property. Remark in MaedaMaeda p. 1. (Contributed by NM, 22-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion ssdmd2 A C B C A B B 𝑀 A

Proof

Step Hyp Ref Expression
1 chsscon3 A C B C A B B A
2 choccl B C B C
3 choccl A C A C
4 ssmd1 B C A C B A B 𝑀 A
5 4 3expia B C A C B A B 𝑀 A
6 2 3 5 syl2anr A C B C B A B 𝑀 A
7 1 6 sylbid A C B C A B B 𝑀 A
8 7 3impia A C B C A B B 𝑀 A