Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
ssdmres
Next ⟩
dmresexg
Metamath Proof Explorer
Ascii
Unicode
Theorem
ssdmres
Description:
A domain restricted to a subclass equals the subclass.
(Contributed by
NM
, 2-Mar-1997)
Ref
Expression
Assertion
ssdmres
⊢
A
⊆
dom
⁡
B
↔
dom
⁡
B
↾
A
=
A
Proof
Step
Hyp
Ref
Expression
1
df-ss
⊢
A
⊆
dom
⁡
B
↔
A
∩
dom
⁡
B
=
A
2
dmres
⊢
dom
⁡
B
↾
A
=
A
∩
dom
⁡
B
3
2
eqeq1i
⊢
dom
⁡
B
↾
A
=
A
↔
A
∩
dom
⁡
B
=
A
4
1
3
bitr4i
⊢
A
⊆
dom
⁡
B
↔
dom
⁡
B
↾
A
=
A